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Two-particle dispersion in model two-dimensional velocity fields
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Abstract. We consider two-particle dispersion in a velocity field, where the relative two-point velocity
scales according to v2(r) ∝ rα and the corresponding correlation time scales as τ (r) ∝ rβ, and fix α = 2/3,
as typical for turbulent flows. We show that two generic types of dispersion behavior arize: For α/2+β < 1
the correlations in relative velocities decouple and the diffusion approximation holds. In the opposite case,
α/2 + β > 1, the relative motion is strongly correlated. The case of Kolmogorov flows corresponds to
a marginal, nongeneric situation. In this case, depending on the particular parameters of the flow, the
dispersion behavior can be rather diffusive or rather ballistic.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
47.27.Qb Turbulent diffusion

Since the seminal article of Sir L.F. Richardson on the
particles’ dispersion in atmospheric turbulence [1] a large
amount of work has been done in order to understand the
fundamentals of this process (see [2] and [3] for reviews).
Based on an empirical evidence, Richardson found out
that the mean square distance R2(t) =

〈
r2(t)

〉
between

the two particles dispersed by a turbulent flow grows pro-
portionally to t3. The works of Obukhov and Batchelor
have shown that the Richardson’s law is closely related
to the Kolmogorov-Obukhov scaling of the relative veloc-
ities in turbulent flows. Scaling arguments based on the
dimensional analysis allow then to understand the overall
type of the behavior of R2(t). Thus, the Richardson’s law
follows as an intermediate asymptotic behavior pertinent
to the inertial range λ � R � L, where λ is the viscous
scale and L is the integral scale of the flow. On the other
hand, the full theoretical picture of the dispersion pro-
cess is still lacking, and typical analytical results disagree
strongly with those of experiments and simulations [3].
Thus much effort was put into development of stochastic
approaches which do not follow directly from equations of
fluid dynamics but use extra physical assumptions.

The theoretical description of the dispersion process
typically starts from models, in which one fixes the
spatial statistics of the well developed turbulent flow
(Kolmogorov-Obukhov energy spectrum), and discusses
different types of the flows’ temporal behavior [3]. Three
situations have been considered so far. In connection with
“real” turbulence the two cases are widely discussed. They
correspond to different assumptions about the life-time of
the flow structures (“eddies”) and about their transport
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by the overall flow. In one of them the temporal decorrela-
tion is connected with death and birth of the eddies, whose
lifetime is proportional to their revolution time and is gov-
erned by the Kolmogorov’s universality assumption [4,5].
Another premise supposes that the temporal decorrela-
tion of the particles’ relative motion takes place because
the pair as a whole is moving, due to a mean velocity, rel-
ative to an essentially frozen flow structure (as proposed
by a Taylor hypothesis, see Sect. 21.4 of Ref. [2]). This
assumption serves as a basis for successful numerical ap-
proaches [5,6], see Section 6.5.1 of reference [3] for discus-
sion. Thus, in applications the time-dependent turbulent
flow is often mimicked either by sweeping a frozen array of
eddies past the laboratory frame by some constant veloc-
ity [6] or by sweeping indefinitely persisting eddies by the
overall (self-consistent) velocity field [7]. Both Kolmogorov
and Taylor situations are extremely awkward for theoret-
ical analysis. On the other hand, the white-in time flows
represent a toy model which allows for deep analytical in-
sights [8,9].

In the present note we address the following question:
What are the generic types of the two-particle dispersion
behavior in a velocity field whose statistical spatial struc-
ture is fixed (and similar to one of a turbulent flow), if
its temporal correlation properties change. To answer this
question we present a tunable model that covers the over-
all range of interest and discuss the situation in the frame-
work of scaling concepts and numerical simulations. As we
proceed to show, two generic types of behavior arise. Thus,
the white-in-time flow and the Taylor-type situation be-
long to the classes of diffusive and ballistic behavior, re-
spectively. The case of Kolmogorov temporal scaling rep-
resents a borderline situation, in which case, depending
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on the particular parameters of the flow, the dispersion
behavior can be rather diffusive or rather ballistic. The
properties of this nongeneric case can hardly be under-
stood without deep understanding of generic patterns.

Let us consider modes of particles’ separation in
a velocity field whose two-time correlation function
of relative velocities behaves as 〈v(r, t1)v(r, t2)〉 ∝〈
v2(r)

〉
g [(t2 − t1)/τ(r)], where τ(r) is the distance-

dependent correlation time. The g-function is defined so
that g(0) = 1 and

∫∞
0 g(s)ds = 1. The mean square rela-

tive velocity and the correlation time scale as〈
v2(r)

〉
∝ v2

0

(
r

r0

)α
(1)

and

τ(r) ∝ τ0
(
r

r0

)β
· (2)

One can visualize such a flow as being built up from sev-
eral structures (plane waves, eddies, etc., see Ref. [3]), each
of which is characterized by its own spatial scale and its
scale-dependent correlation time. In well-developed tur-
bulent flows the Kolmogorov scaling postulate [10] implies
that the energy dissipation rate ε (having the dimension
of
[
L2/T 3

]
) is the only relevant dimensional parameter in

the inertial range, so that one has v2(r) ∝ ε2/3r2/3 and
τ ∝ ε−1/3r2/3, so that α = 2/3 and β = 2/3. The sim-
plifying assumptions disregard the connection between α
and β. Thus, the Taylor’s frozen-flow assumption leads to
β = 1, and the white-in-time flow corresponds to β = 0.
In what follows we discuss the behavior of two-particle
separation for different values of β ∈ [0, 1] in a two-
dimensional system in order to identify the generic regimes
and pay special attention to a Kolmogorov case as one of
the most experimental relevance.

Although three-dimensional synthetic turbulent flows
can be readily generated [3], there are several reasons to
restrict ourselves to two-dimensional flows. First, the two-
dimensional results are of immediate experimental rele-
vance. Thus 2d flows generated by inverse energy cascade
show the same Kolmogorov scaling behavior as 3d ones
in the direct cascade case. This behavior was theoreti-
cally predicted in late 1960s [11,12] and observed experi-
mentally [13]. The details of such velocity fields are easily
accessible for measurements and allow direct comparison
with simulations. On the other hand, in 2d it is consider-
ably easier to collect the data statistics large enough to en-
able detection of rare events, possibly of high importance
in dispersion process [6,14,15]. In our simulations we use
the quasi-Lagrangian approach of reference [4]. The rela-
tive velocity v(r, t) = ∇ × η(r, t) is given by the quasi-
Lagrangian stream function η. This function is built up
from the contributions of radial octaves:

η(r, t) =
N∑
i=1

k
−(1+α/2)
i ηi(kir, t), (3)

where ki = 2i, and the flow function for one-octave
contribution in polar coordinates (r, θ) is given by

Fig. 1. Mean square displacement R2(t) plotted in double log-
arithmic scales. The four lower curves correspond to β = 0,
0.17, 0.33 and 0.5 (from bottom to top). The dashed lines in-
dicate the slopes 1.5 and 3. The four upper curves for β = 0.67,
0.8, 0.9 and 1 are hardly distinguishable within the statistical
errors of the simulations. The inset shows the values of γ(β).
The error bar shows the typical accuracy of all γ-values. The
full lines give the theoretical predictions, equations (4, 5).

ηi(kir, t) = F (kir) (Ai(t) +Bi(t) cos(2θ + φi)). The radial
part F (x) obeys F (x) = x2(1 − x) for 0 ≤ x ≤ 1
and F (x) = 0 otherwise, and φi are quenched random
phases. The choice of ηi proposed in [4] is not arbitrary
but is based on the lowest-order perturbation expansion of
the generic quasi-Lagrangian stream function for r small.
Moreover, Ai(t) and Bi(t) are independent Gaussian ran-
dom processes with 〈Ai(t)〉 = 〈Bi(t)〉 = 0 and

〈
A2
i (t)

〉
=〈

B2
i (t)

〉
= v2

0, and with correlation times τi = 2−iβτ0.
At each time step these processes are generated according
to Xi(t+∆t) =

√
1− (∆t/τi)2Xi(t) + (∆t/τi)v2

0ζ, where
X is A or B, and ζ is a Gaussian random variable with
zero mean and unit variance. The values of τ0 and the
integration step ∆t are to be chosen in such a way that
τN & ∆t. Typically, values of ∆t ∼ 10−4 are used. For the
noncorrelated flow (β = 0) the values of Ai(t) and Bi(t)
are renewed at each integration step ∆t. In the present
simulations N = 16 was used. The value v0 = 1 was em-
ployed in the majority of simulations reported here, so
that only the use of a different v0 value will be is explic-
itly stated in the following.

The values of R2(t) obtained from 3000 realizations
of the flow for several values of β ∈ [0, 1] are plotted on
double logarithmic scales in Figure 1, where τ0 = 0.15 is
used. One can clearly see that for all β a scaling regime
R2(t) ∝ tγ appears. We note moreover that the curves
for β = 0.67, 0.8, 09 and 1.0 are almost indistinguishable
within statistical errors. The values of γ as a function of
β are presented in the inset, together with the theoreti-
cally predicted forms, vide infra. These values are deter-
mined by a least-squares-fit within the scaling region of
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each curve: the values shown are obtained in the domain
−2 ≤ log10 t ≤ 0 for β = 0 and for β = 0.17, and in the
domain −2.5 ≤ log10 t ≤ −0.5 for the other values of β.
The uncertainty in the values of γ (indicated as a typical
error bar) is mostly connected with the choice of fitting
region.

The regimes of dispersion found in simulations can
be explained within the framework put forward in ref-
erence [16]. The discussion starts by considering l(r) =
v(r)τ(r), the mean free path of motion at the distance r.
If this mean free path always stays small compared
to r, the relative motion exhibits a diffusive behavior
with a position-dependent diffusion coefficient, K(r) ∝
l2(r)/τ(r) ∝ rα+β . Taking as a scaling assumption r ∝〈
r2(t)

〉1/2
= R, one gets that the mean square separa-

tion R grows as R2 ∝ tγ with

γ =
2

2− (α+ β)
· (4)

On the other hand, if l(r) is of the order of r, the mean sep-
aration follows from the integration of the ballistic equa-
tion of motion d

dtR = v(R) ∝ Rα/2, see reference [15].
Thus, in a flow where a considerable amount of flow lines
of relative velocity are open, one gets R2 ∝ tγ , with

γ =
4

2− α · (5)

The occurrence of either regime is governed by the value
of the (local) persistence parameter of the flow,

Ps(r) = l(r)/r = v(r)τ(r)/r. (6)

Small values of Ps correspond to erratic, diffusive mo-
tion, while large values of Ps imply that the motion is
strongly persistent. The value of the persistence parameter
scales with r as Ps(r) ∝ rα/2+β−1. Since under particle’s
dispersion the mean interparticle distance grows contin-
uously with time, the value of Ps decreases continuously
for α/2 + β < 1, so that the diffusive approximation is
asymptotically exact. For α/2 + β > 1 the lifetimes of
the structures grow so fast that the diffusive approxima-
tion does not hold. This situation is one observed in our
simulations for β > 2/3. The strong ballistic component of
motion implies that the velocities stay correlated over con-
siderable time intervals. The results of Figure 1 confirm
that γ(β) behaves accordingly to equation (4) for β < 2/3
and equation (5) for β > 2/3. We note here that the pa-
rameters of the simulations presented in Figure 1 (v0 = 1,
τ0 = 0.15) were chosen in a way that allows to show all
curves within the same time- and distance intervals. This
leads to a somehow restricted scaling range and to slight
overestimate of γ-values in the diffusive domain.

Strong differences between the diffusive and the bal-
listic regimes can be readily inferred when looking at
typical trajectories of the motion, such as ones plotted
in Figure 2 for the cases β = 0.33 and β = 0.67. The
difference between the trajectories is evident both in the
(x, y)-plots and in the r(t)-dependences. The curves for

Fig. 2. Typical trajectories in the diffusive regime (β = 0.33)
and in the Kolmogorov regime (β = 0.67). The upper pictures
show the trajectories in the (x, y)-plane, the lower ones repre-
sent the corresponding r(t)-behavior. Note that the scales of
the right and of the left graphs differ by a factor of 5.

β = 0.33 exhibit a random-walk-like, erratic behavior,
while the curves for β = 0.67 show long periods of lami-
nar, directed motion. In order to quantitatively character-
ize the strength of the velocity correlations we calculate
the backwards-in-time correlation function (BCF) of the
radial velocities, as introduced in reference [13]. This func-
tion is defined as Cr(τ) = 〈vr(t− τ)vr(t)〉 /

〈
v2
r (t)

〉
and

shows, what part of its history is remembered by a parti-
cle in motion. The function is plotted in Figure 3 against
the dimensionless scaled time ϑ = −τ/t. The functions
(obtained in 104 realizations each) are plotted for 4 differ-
ent sets of parameters. Here the dashed lines correspond
to β = 0.33, in the diffusive range, for t = 10−2, 3× 10−2,
10−1 and 3× 10−1. These BCFs do not follow a universal
law as functions of ϑ only, and are rather sharply peaked
close to zero, thus indicating the loss of memory. The two
sets of full lines indicate Cr(τ) in Kolmogorov flows, for
t = 10−2, 3× 10−2, and 10−1. The lower set corresponds
to the value τ0 = 0.05 and the upper set to the value
τ0 = 0.15. In both cases the functions show universal be-
havior, i.e. follow the same pattern as a function of ϑ,
independent of t. No considerable changes in the BCF’s
form occur when further increasing the value of τ0 up to
τ0 = 1, thus indicating that the data τ0 = 0.15 correspond
already to a strongly correlated regime. The form of these
curves resembles closely the experimental findings of refer-
ence [13]. The BCFs for β = 1.0 show an overall behavior
very similar to the one in Kolmogorov’s case. Note that
as the time grows the curves for β = 1.0 approach those
for β = 2/3 and probably tend to the same limit. The
curves for β = 1.0 and τ0 = 1 (not shown) fall together
with those in Kolmogorov’s case with τ0 = 0.15.

The similarity in the properties of dispersion processes
in a Kolmogorov situation with larger Ps (larger τ0) and
in ballistic regime can be explained based on the behav-
ior of the effective persistence parameter. In the diffusive
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Fig. 3. The BCF of relative velocities as a function of the di-
mensionless time lag −τ/t. The lower group of dashed lines
corresponds to β = 0.33 (the values of t are 0.01, 0.03,
0.1 and 0.3, from top to bottom). The two groups of full
curves corresponds to the Kolmogorov case (three curves for
t = 0.01, 0.03, 0.1 each). The dotted curves correspond to β = 1
for the same values of time, see text for details.

regime we supposed that the correlation time of the parti-
cles’ relative velocity scales in the same way as the Eule-
rian lifetime of the corresponding structures. On the other
hand, in the ballistic regime, β > 1 − α/2, the lifetimes
of the structures grow so fast that no considerable decor-
relation takes place during the time the particles sweep
through the structure. The Lagrangian decorrelation pro-
cess is then connected not to Eulerian decorrelation, but
to sweeping along open flow lines. The effective correlation
time then scales according to τs(r) ∝ r/v(r) ∝ t1−α/2, and
the effective value of β stagnates at β = 1−α/2. Thus, all
long-time correlated cases belong to the same universality
class of strongly-correlated flows, as the Kolmogorov flows
with large Ps, for which equations (4, 5) coincide. Note
that it does not mean that the properties of dispersion
cease to depend on the temporal properties of the flow,
as shown in reference [17] for the case of the model flow
with β = 2.

For Kolmogorov flows the ballistic and the diffu-
sive mechanisms lead to the same functional form of
R2(t)-dependence [18]. The functional form of the de-
pendence of R2(t) on parameters of the flow is R2 ∝(
v2

0τ0/r
α+β
0

)γ
tγ in the diffusive situation (Ps � 1) and

R2 ∝
(
v0/r

α/2
0

)γ
tγ in the ballistic case (Ps � 1). As-

suming that Ps is the single relevant parameter gov-
erning the dispersion we are lead to the form R2(t) ∝
f(Ps)

(
v0/r

α/2
0

)γ
tγ , where f(Ps) is a universal function

of Ps, which behaves as Psγ for Ps � 1 and tends to a
constant for Ps� 1. Thus, for a fixed spatial structure of
the flow, the following scaling assumption is supposed to
hold:

R2(t)
(v0t)

γ = F (v0τ0), (7)

Fig. 4. The values of R2(t)/(v0t)
3 plotted against v0τ0. The

full line is drawn as a guide to the eye.

which scaling can be checked in our case by plotting
R2(t)/(v0t)3 against v0τ0. The corresponding plot is given
in Figure 4, where we fix t = 0.1, and plot the results in
three series of simulations. Each point corresponds to an
average over 5 × 104 runs. Here the squares correspond
to v0 = 1 and to the values of τ0 ranging between 0.01
and 0.15, the triangles correspond to v0 = 0.3 and to τ0
between 0.033 and 0.5, and the circles to τ0 = 0.1 and to
values of v0 between 0.1 and 1.5. The error bar indicates
a typical statistical error as inferred from 5 similar series
of 5×104 runs each. The scaling proposed by equation (7)
is well-obeyed by the results. Some points outside of the
range of Figure 4 were also checked. Thus, for larger val-
ues of v0τ0 the values of R2(t)/(v0t)3 seem to stagnate. On
the other hand, increasing v0τ0 to values larger than 0.3
(i.e. approaching the frozen flow regime) leads to a strong
increase in fluctuations, making the results less reliable.

Another sign of the transition from diffusive to ballistic
regime when increasing v0τ0 in the Kolmogorov flow is
given by the distribution of the relative distances between
the turning points of the trajectories of relative motion.
The model of reference [18] proposes that for the flows
following Kolmogorov scaling, the ratio of the positions of
two subsequent turning points of the trajectory, r1 and
r2, ξ = r2/r2, has a probability density with the outer tail
that scales as p(ξ) ∝ ξ−λ (for ξ > 1) with λ = 1 + 1/Ps,
so that the process leading to the turbulent dispersion can
be described as a kind of multiplicative Lévy-process. The
values of λ > 3 correspond to the diffusive behavior, while
for λ < 3 a strong ballistic component is present. For λ < 2
even the first moment of the corresponding distribution is
absent, and a considerable amount of particles reach the
end of inertial range without changing once a direction of
their relative motion.

In Figure 5 we plot on double logarithmic scales
the probability density p(ξ) as obtained in 106 realiza-
tions of the trajectories (as one shown in Fig. 2) for
the Kolmogorov case for v0 = 1 and different values of
τ0 = 0.02, 0.05, 0.2 and 1.0. Figure 5 shows that the
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Fig. 5. The probability density of the distribution of the rel-
ative positions of two subsequent turning points of relative
motion, ξ = r2/r1. Note the double logarithmic scales. The
diamonds correspond to τ0 = 0.02, the circles to τ0 = 0.05,
the squares to τ0 = 0.2, and the triangles τ0 = 1.0. The full,
dotted and dashed lines have the slopes of –3.1, –2.4 and –1.8,
respectively.

outer tail of p(ξ) follows a power-law (a straight line on
the scales of Fig. 5) and that the corresponding slope −λ
grows with τ0. Thus, the case τ0 = 0.02 corresponds to
the diffusive behavior (the second moment of ξ exists),
the case τ0 = 0.05 is one where the ballistic behavior gets
important (the second moment of ξ diverges, but the first
one still exists), and the cases τ0 = 0.2 and τ0 = 1.0 are
dominated by ballistic events (the first moment of ξ di-
verges).

Let us summarize our findings. Thus, we considered
two-particle dispersion in a velocity field scaling according
to v2(r) ∝ r2/3 and τ(r) ∝ rβ . We show that two generic
types of behavior are possible: For α/2 + β < 1 the dif-
fusion approximation holds and the increase in the inter-
particle distances is governed by the distance-dependent
diffusion coefficient K(r) ∝ rα+β . In the opposite case
α/2 + β > 1 the relative velocities stay strongly corre-
lated. The transition between the two regimes takes place

exactly for the Kolmogorov flow, for which α/2+β = 1. In
this case the properties of the dispersion process depend
on the persistence parameter of the flow.
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